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Abstract

There are some restrictions in the two sources estimation problem in recent studies. One of the restrictions is that the
estimated results are inaccurate when two sources have different shapes and close distance. Another is that the accuracy
of the estimation is questioned when the duration of two heat sources has a significant difference. The third restriction
is that the estimation becomes inaccurate when the ratio of the peak values of the two heat sources is too large. Therefore,
it is necessary to develop a robust method to estimate the strengths of two heat sources in order to alleviate the problems
in past research. In this paper, a numerical algorithm coupled with the concept of future time is proposed to determine
the problem sequentially. A special feature about this method is that no preselect functional form for the unknown
sources is necessary and no sensitivity analysis is needed in the algorithm. Three examples are used to demonstrate the
characteristics of the proposed method. From the results, they show that the proposed method is an accurate and
efficient method to determine the strength of the two sources in the inverse heat conduction problems. © 1998 Elsevier

Science Ltd. All rights reserved.

1. Introduction

The inverse source problem is the determination of
the strength of the heat source from the temperature
measured at a different point other than the sources’
locations. It is an ill-posed problem because a small
measurement error induces a large estimated error [1-9].
The inverse source problem is practical in many design
and manufacturing areas in which the strength of the
heat source is undetermined. Common problems include
the detection of the quantity of the energy generation in
a computer chip, or in a microwave heating process, or
in a chemical reaction process.

The one-dimensional inverse problem with one
unknown source has been investigated and satisfied
results are reported [10, 11]. The problem with two
unknown sources was also investigated by Silva Neto and
Ozisik [12], but some limitations were presented. In past
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research, the estimated results were inaccurate when two
sources had different shapes and close distance (ten per
cent of the medium length). The accuracy of the esti-
mation was influenced by a significantly different source
strength duration between two heat sources, and the esti-
mation became poor when the ratio of the peak values
of the two heat sources was larger than six. Consequently,
the application of the inverse technique to estimate two
sources falls within a very limited scope. Therefore, a
more robust algorithm needs to be developed in order to
extend the scope of the application in the two source
estimation problems.

The purpose of this research is to propose a sequential
method to estimate the strength of two heat sources based
on numerical computation which is more efficient than
that of the symbolic computation [11]. Meanwhile, it also
alleviates the restriction of the problems concluded in
past research [12]. In the proposed method, there is no
prior information on the functional form of the strength
of the heat sources and there is no sensitivity analysis in
the proposed algorithm. In the process of the derivation,
a finite-element-difference method [13, 14] combined with
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the concept of future time [4] is used to derive the result.
Then, the strength of two heat sources are determined
step by step along with the temporal coordinate.

This paper includes five sections. In the present section,
the current development of the inverse source problems
is introduced and the features of the proposed method
are also stated. In the second section, the characteristics
of the inverse problem are delineated and the process of
the proposed method is illustrated. In the third section,
a computational algorithm is proposed to implement the
method using a computer. In the fourth section, three
examples are employed to demonstrate the process of the
proposed method. A discussion of the analyzed results is
also presented in this section. Finally, the overall con-
tribution and possible applications of this research to the
field of inverse heat conduction problems are concluded
in the fifth section.

2. Approach to the two source estimation problem based
on the proposed method

2.1. Problem statement

The inverse problem consists of finding the strength of
two heat sources at different interior points of the spatial
interval while the temperature measurements at the
boundaries are given. Consider a slab with L thickness
and constant thermal properties. This slab originally has
a uniformly distributed temperature. At a specific time
f = 0, two heat sources G,(f) and G,(¢) are applied to the
interiors of the slab ¥ = X;; and ¥ = X,, while the front
and back surfaces are adiabatic. Then, a dimensionless
mathematical formation of the heat conduction problem
is presented as follows :
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where the following dimensionless quantities are defined
as:
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k is the thermal conductivity and piCP is the heat capacity

per unit volume, T, and G, refer to the nonzero reference
temperature and the strength of the source, respectively.
We assume k = k,.

The inverse problem is given the temperature measured
at x = 0 and x = 1 to estimate the strengths of the heat
sources G,(¢) and G,(7).

2.2. The method to determine the strength of two heat
sources

The proposed method uses a finite-element method
with linear element to discretize the spatial coordinate
and uses a finite-difference method to discretize the tem-
poral coordinate. A finite-element method with p equi-
distant grid at ¢ = ¢;[14] is used to construct the following
matrix equation :
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T;
T}
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where ¢; = G,(t), ¢; = G,(t), and T =(dT%/df). Ax is
the increment of the spatial coordinate. The superscript
isdenoted as the index of the spatial grid and the subscript
is denoted as the index of the temporal grid. The locations
of ¢; and ¢, in vector {S,} are at the grids corresponding
with the source locations x;, and x;,.
Next, we consider our finite element expression for

{T}} as a backward difference at time #, Therefore, we
have

R 1 1
{T/} :E{T/‘}*E{TJ—I} )

Here At is the increment of the temporal coordinate.
Substitute equation (9) into equation (5), we have the
following differential equation :

[KHT;} =[BT, 1} +{S)} (10)

where

1 1
[Kl = [M]+ [N and [B] = [N]

When ¢ = ¢, the temperature distribution {T}} can be
derived from equation (10) as follows:
{T)} = [KI7'[BUT,- }+ K] {S)}
= [CHT;-1} +[DI{S)} (11
where [C] = [K]~'[B] and [D] = [K]".

Similarly, the temperature  distribution  at

t =ty tyirs---sturr— 1 can be represented as follows:

{]—‘m} = [C]{Tnt—l}+[D]{Sn1}
{’Tm+l} = [Q{Tn1}+[D]{Snr+l}
= [C’]Z{’Tm—l} +[C][D]{Sn1] +[D]{Sm+1}

'{];nJrr— 1 } = [C]{Ter/‘fZ} + [D] {Sm+r7 1}

= [CI{T,-1}
+ [C]’.7 : [D]{Sm} + [C]772 [D] {Sm+ 1 } + e
+[CJ[D]{Sm+r72}+[D]{Sm+r—l} (12)

The vector {S} is composited by the unknown heat
sources ¢ and ¢ (i.e., {S} = {u"}¢,+ ("} ). {u''} and
{u”*} are the unit column vectors with a unit at i1th and
i2th component, respectively. As well, i1 and i2 are the
grid number of the locations of the estimated function ¢,
and ¢, respectively. And then a unit row vector | v’ ] (i.e.,
a unit at i-component) times to both sides of equation
(12), the temperature at i-spatial grid can be calculated
as:
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+Lo J[DNu" } , + Lot |[DY ('} s,
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(13)

Then, the temperatures at i-spatial grid can be expressed
as follows:
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Here, the subscript of e is the difference of the sub-
scripts of a. The superscripts i and i* are the grid numbers
of the measured location and the source location, re-
spectively.
As well, the following properties can be derived,

ain,O = LuiJ[CJ{Tvmfl}
afn+1,0 = L”iJ[C]Z{Tmfl}
aiﬂ+2‘0 = LuiJ[q3{an—l}

10 = L' JICI{T,, 1} (16)

where {T,,_,} is the temperature distribution at t = ¢,,_,.
The value of i indicates the grid number of the measured
location. In this study, the values of j are 1 and p+1.

The coefficient @}, @iy | s> diih o1 d52,, ..., and
ai,_ . in equation (15) depends on the locations of the
measured point and the input source strengths. As well,
the values of the coefficients count on the step number of
future time but not the time step in the global temporal
coordinate. In other words, those coefficients are con-
stant in each iteration and they only need to be calculated
once when the locations of the measured points and the
input sources are fixed. It is different from the symboic
method developed in Ref. [11], which needs to calculate
the coefficients e, €5, ..., and ¢", in each iteration.
On the other hand, the coefficients in equation (16) ., ,
10> Ayings .-, and d, 1, are derived from matrix
[C] and the previous state {T,_,}. Therefore,these
coefficients need to be evaluated iteratively.

When t=1t,, the estimated condition, ¢, ¢,
Gsseees Pty P15 Qo5 @3, ..., and @,,_, have been evalu-
ated the problem is to estimate the strength of the heat
sources ¢,, and ¢,,. To stabilize the estimated results
in the inverse algorithms, the sequential procedure is
assumed temporally that several future source strengths
are constant [4]. Then, the unknown conditions in the
future time are assumed to be equal, i.e.,

¢m+1 = ¢m+2 == (bmﬁ»er = (bmﬁ»rfl = (bm (17)
Pt = P2 =" = Opgr2 = Qpyr1 = Ppy (18)

Here r is the number of the future time.
With the assumption of the future time, equation (18)
can be rewritten to the following form:
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and 7 is the grid number of the measured location and i*
is the grid number of the source location.
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After the measured temperature Y’ (measured at 1 =
and x = x,) is substituted into vector 3, the components
of vector 0 can be found through a linear least-squares
error method [15]. Therefore, the result is:

0=(@"®) '®"9 (23)

This equation provides a sequential algorithm that can
be used to estimate the two sources through increasing
the value of m by one for each time step. Therefore,
the strength of the heat sources ¢ and ¢ can be solved
iteratively along the temporal coordinate. The proposed
method is based on the finite-element-difference
approach, and it can be extended to use other kinds of
numerical methods through the proposed algorithm.

3. Computational algorithm

The procedure for the proposed method can be sum-
marized as follows : first, we choose the number of future
time r, the discretized spatial size Ax and temporal size
At, and the measured grids i1 and 2. Then, matrix [B]
and stiffness matrix [K] of the finite-element model are
known. Thus, matrices [C], [C]%...,[C]" and [D],
[C1[D],...,[C)'[D] can be calculated in advance and
the coefficients E;"! and E%” are known before the iter-
ation. After that, the iteration includes the following
steps:

Step 1. Let j = m and the temperature distribution at
{T;_.} is known.

Step 2. Calculate ay, d@iy 10, diiag,--
through equation (16).

Step 3. Collect the measurement at boundaries Y,

oand @,

),H»la"-s Yvﬁ»r—l',‘ .
Step 4. Calculate 0 = | ¢;¢; ]” according to equation
(23).

Step 5. Calculate {7T}}.

Step 6. Terminate the process if the final iteration is
attached. Otherwise let j = m+ 1 return to Step
2.

4. Results and discussion

In this section, problems defined from equations (1)—

(4) are used as examples to estimate the strength of the
heat sources. The strength of the heat sources is chosen
with a step change or a sharp corner over temporal coor-
dinate because those kinds of forms are most difficult to
recover in the inverse analysis. Three examples are used
to demonstrate the proposed method that can estimate
the strength of two sources accurately even though some
restrictions exist. The exact temperature and source terms
used in the following examples are preselected so that
these functions can satisfy equations (1)—(6). The accu-
racy of the proposed method is assessed by comparing
the estimated strengths of the heat sources with the pre-
selected heat sources. Meanwhile, the simulated tem-
perature measurement is generated from the exact tem-
perature in each problem and it is presumed to have
measurement errors. In other words, the random errors
of measurement are added to the exact temperature. It
can be shown in the following equation :
Y, =Tj+4,0 (24)
where the subscripts i and j are the grid number of spatial-
coordinate and temporal-coordinate, respectively. 7% in
equation (24) is the exact temperature. Y/ is the measured
temperature. ¢ is the standard deviation of measurement
errors. /;; is a random number. The value of 4;; is cal-
culated by the IMSL subroutine DRNNOR [16] and
chosen over the range —2.576 < 4;; < 2.576, which rep-
resents the 99% confidence bound for the measurement
temperature.

The temporal domain is from 0.02-2 with 0.02
increment for the example problems. Two thermocouples
are allocated at the front and back surfaces of the
medium. Detailed descriptions for the examples are
shown as follows:

Example 1: Two heat sources G,(¢) and G,(¢) have differ-
ent shapes and are placed closed. Two cases
(X1, x) =(0.4,0.5) and (0.49,0.51) are discussed. The
heat sources G,(¢) and G,(¢) are presumed in the following
forms:

G(t)=0 t<04 ort>=1.06
G(H=05 04<r1<16

and

G,(H =03 <04

G,(n =3(t—1)+05 04<i<1
Gy(f) = —3(t—1)+0.5 1<:<1.6
G,( =01 t>1.6

In the first case (x;,x;,) =(0.4,0.5), the estimated
results are not accurate in Silva Neto and Ozisik’s
approach. They concluded that it is not possible to esti-
mate the source strengths by the measurements taken at
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both boundary surfaces when the two sources are very
close to each other and have distinctly different shapes.
However, the estimated results of the proposed method
shown in Fig. 1a and b are acceptable. Furthermore, the
estimated results (see Fig. 1c and d) are still good when
two sources get closer [i.e., (x;,X;) =1(0.49,0.51)].
Therefore, the proposed method can estimate two dis-
tinctly different shapes sources accurately even though
they are close to each other.
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Example 2: The effect of a different strength duration
between two heat sources is examined. The source
locations are x;; = 0.1 and x;, = 0.9. The source strength
G, (1) and G,(¢) are presumed in the following forms:

G(t)=0 t<04 ort>=1.6
G, (1)=0.5 04<r<1.6
G,()=0 t<d, ort=d,
G,(1)=0.5 d <t<d,

0.6 I T | T
0.5 Ouoﬂ oeleosecoeelenelosl —
— (o]
& 04 o o -
< q
2 03f o -
7] 02 L o q _
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=2
O. 1 — = 8 o -
3 : o 1 .
0 AUUVUQQ OOnnnU &
-0.1 | | J |
0 20 40 60 80 100

Number of Time Steps

Fig. la. The estimation of the strength of G,(¢) with ¢ = 0.01 in example one when two sources are located at x;; = 0.4 and x;, = 0.5.

0.6 T

(DN
<
2n
g
A
8
3
S
n Exact ©Too
0+ o r=8 o -
0.1 | | | l
0 20 40 60 80 100

Number of Time Steps

Fig. 1b. The estimation of the strength of G,(7) with ¢ = 0.01 in example one when two sources are located at x;; = 0.4 and x;, = 0.5.
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Fig. lc. The estimation of the strength of G,(¢) with ¢ = 0.01 in example one when two sources are located at x;; = 0.49 and x;, = 0.51.
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Fig. 1d. The estimation of the strength of G,(z) with ¢ = 0.01 in example one when two sources are located at x,; = 0.49 and x;, = 0.51.

Three cases are examined that are (d,,d,) =(0.9,1.0),
(0.8,1.0), and (0.7, 1.1).

In the second example, the effect of source duration is
testified. When the problem with (d,d,) =(0.8,1.0) is
solved, the results show that the accuracy of the present
estimation is better than that of Silva Neto and Ozisik’s
research (see Fig. 2a and b). Furthermore, the problem
with various source duration is verified. The ratio of the
duration of G,(f) and G,(?) is 12, 6, and 3, respectively.
The means and variances of estimated error (i.e., esti-

mated results minus exact function) are shown in Table
1. First, we compare the results of G,(f) when
(d\,d,) =(0.9,1.0), (0.8,1.0) and (0.7, 1.1). It is clear that
the means of G,(¢) in the different duration are very close
to one another, and the variances of G,(¢) are close to
one another, too. Second, the stochastic parameters of
G (1) and G,(t) are observed when (d,,d,) =(0.9,1.0).
The means are —0.00101826 and —0.00010812 for G,(¢)
and G,(?), respectively, and the variances are 0.00412058
and 0.00440229 for G,(¢) and G,(z), respectively. The
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Fig. 2a. The estimation of the strength of G,(¢) with ¢ = 0.01 in example two when two sources are located at x;; = 0.1 and x;, = 0.9.
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Fig. 2b. The estimation of the strength of G,(#) with ¢ = 0.01 in example two when two sources are located at x;, = 0.1 and x;, = 0.9.

Table 1
The means and variances of the error function in example two (r = 4)

G\(1) G\(1) Gy(1) Gy(1)

Mean Variance Mean Variance
d=09,d =1 —0.00101826 0.00412058 —0.00101812 0.00440229
d=08d, =1 —0.00101827 0.00411222 —0.00101812 0.00447798

d=07,d,=1.1 —0.00101837 0.00411286 —0.00101822 0.00415895
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results show that the stochastic values are close to each
other when G,(¢) and G,(¢) are estimated simultaneously.
In conclusion, the results from the proposed method
show that the source duration does not have a strong
impact on the problem.

Example 3: The heat sources G,(¢) and G,(f) have tri-
angular shapes, and different peak strengths. The
locations of the heat sources are x; = 0.05 and
x» = 0.95. G,(¢) and G,(7) have the following forms:

Gi()=0 G,(0)=G,(t) t<04 orr=1.6

h 1
Gi(1) = [5(=04) Gx(1) = 5(1—04) 04<i<]

h 1
Gl(z)=ﬁ(z—l.6) Gz(z)=ﬁ(t—1,6) l<t<1.6

where h = 3,6, 9, 12, 24, 48, and 96.

In Silva Neto and Ozisik’s approach, they concluded
that the estimations were poor when the value of / is
greater than six. In this research, the estimation of G ()
is always good when /& = 3, 6, 9, 12, 24, 48, and 96 (see
Fig. 3a and b). However, the estimation of G,(7) gets
worse when the value of /i gets larger (see Fig. 3c). There-
fore, a modification of the proposed method is needed to
increase the accuracy of the estimation of G,(f). The
modified method is first to execute the proposed method
from which an accurate estimation of G,(f) can be
obtained (see Fig. 3a and b). Then, the estimated value
of G,(7) is substituted into the heat equation and leads to
an inverse problem with one unknown source strength.
Consequently, the estimated value of G,(¢) is solved.
From the estimated results, it shows that the modified

method can estimate the value of G,(¢7) accurately when
h=12 (see Fig. 3d). Furthermore, the method is
implemented to more restricted situation in which the
value of /1 is 24, 48, and 96, respectively (see Fig. 3e). As
well, the results are still acceptable.

In all examples, the estimated results match with the
exact solutions when measurement errors are not
included and the number of future time is one (r = 1).
All numerical calculation is performed on a personal
computer with a Pentium-133 CPU. The computation
required about 2.37 s CPU time when the number of
future time r = 8 is taken in example one, about 1.31 s
CPU time when the number of future time r =4 are
taken in example two, and about 1.65 s CPU time when
the modified method and the number of future time r = 4
is used in example three. However, Silva Neto and Ozisik
spend about 10 s of CPU time in the CRAY Y-MP super
computer in their approach. Therefore, the proposed
method is a considerably faster inverse algorithm.

From the above discussion, it can be concluded that
the proposed method is an accurate, robust and efficient
method to determine the strength of two sources in the
inversive heat conduction problems.

5. Conclusion

An efficient algorithm has been introduced for deter-
mining the strength of two sources in the inverse con-
duction problems. The inverse solution is represented as
a closed form which is derived from a finite-difference-
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Fig. 3a. The estimation of the strength of G,(7) with ¢ = 0.02 in example three when two sources are located at x;; = 0.05 and x;, = 0.95

(r=4and h=3,6,9, and 12).
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Fig. 3b. The estimation of the strength of G,(¢) with ¢ = 0.02 in example three when two sources are located at x;; = 0.05 and x,, = 0.95

(r=4and h = 24, 48, and 96).
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Fig. 3c. The estimation of the strength of G,(¢) with ¢ = 0.02 in example three based on the proposed method when two sources are

located at x;; = 0.05 and x, =0.95 (r=4and h =3, 6,9, and 12).

element method when the temperature measurements are
available. A special feature of this method is that no
preselect functional form for the unknown sources is
necessary and no sensitivity analysis is needed in the
algorithm. Three examples have been illustrated based on
the proposed method. The result shows that the proposed

method can estimate the strength of two sources accu-
rately even though two sources have different shape and
close distance, two sources have a significantly different
strength duration, and two sources have a large value of
the ratio of the peak values. In comparison with past
research, the results show that the proposed method is
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Fig. 3d. The comparison of the estimated results of G,(7) in example three based on the proposed method and the modified method

(x; =0.05and x;, = 0.95,r =4, and h = 12).
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Fig. 3e. The estimation of the strength of G,(¢) with ¢ = 0.02 in example three based on the modified method when two sources are

located at x;; = 0.05 and x;,, = 0.95 (r = 4 and h = 24, 48, and 96).

an accurate, robust, and efficient inverse technique. The
proposed method is applicable to the other kinds of
inverse problems such as boundary and source strength
estimation in the multi-dimensional inverse conduction
problems.
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